COVID-19 Modeling and Forecasting
In response to the ongoing COVID-19 outbreak, we extended the Global Epidemic and Mobility model (GLEAM) to incorporate the effects of travel restrictions, non-pharmaceutical interventions, age-structured contact patterns, and vaccination campaigns to study, project, and forecast the evolution of the COVID-19 pandemic.
In early 2020, we studied the effect of travel restrictions on the spread of SARS-CoV-2 and we provided some of the early estimates on the basic reproduction number for SARS-CoV-2 and of the estimated risk of sustained community transmission outside Mainland China. Later on, we focused on producing projection scenarios and forecasts on the evolution of the COVID-19 pandemic and the diffusion of different SARS-CoV-2 variants in different countries, while also showing the effects of non-pharmaceutical interventions (business/school closures, testing strategies, mask mandates, etc..), alternative vaccine campaign strategies, and eviction moratoria on future COVID-19 cases, hospitalizations, and deaths.
Online dashboards:
- COVID-19 Scenario Modeling Hub projections
- COVID-19 Forecasting Hub projections
- COVID-19 Mobility in the US
- COVID-19 DeepGLEAM Forecasting dashboard
Papers and Research Reports:
Du, Z., Wang, L., Bai, Y., Wang, X., Pandey, A., Fitzpatrick, M.C., Chinazzi, M., y Piontti, A.P., Hupert, N., Lachmann, M., Vespignani, A. Galvani, A.P., Cowling, B.J., & Meyers, L.A. (2022). Cost-effective proactive testing strategies during COVID-19 mass vaccination: A modelling study. The Lancet Regional Health - Americas, 8, 100182.</br> Read paper here
Gozzi, N., Chinazzi, M., Perra, N., & Vespignani, A. (2022). Estimating the impact of COVID-19 vaccines allocation inequalities: a modeling study.</br> Read research report here
Gozzi, N., Chinazzi, M., Davis, J.T., Mu, K., Pastore y Piontti, A., Vespignani, A., & Perra, N. (2022). Preliminary modeling estimates of the relative transmissibility and immune escape of the Omicron SARS-CoV-2 variant of concern in South Africa. medRxiv, 2022.01.04.22268721.</br> Read pre-print here
Gozzi, N., Chinazzi, M., Davis, J.T., Mu, K., Pastore y Piontti, A., Ajelli, M., Perra, N., & Vespignani, A. (2021). Anatomy of the first six months of COVID-19 Vaccination Campaign in Italy. medRxiv, 2021.11.24.21266820.</br> Read pre-print here
Davis, J. T., Chinazzi, M., Perra, N., Mu, K., y Piontti, A. P., Ajelli, M., Dean, N.E., Gioannini, C., Litvinova, M., Merler, S., Rossi, L., Sun, K., Xiong, X., Halloran, M.E., Longini, I.M., Viboud, C., & Vespignani, A. (2021). Cryptic transmission of SARS-CoV-2 and the first COVID-19 wave. Nature.
Read paper hereKlein, B., Generous, N., Chinazzi, M., Bhadricha, Z., Gunashekar, R., Kori, P., Li, B., McCabe, S., Green, J., Lazer, D., Marsicano, C., Scarpino, S.V., & Vespignani, A. (2021). Higher education responses to COVID-19 in the United States: Evidence for the impacts of university policy. medRxiv: 2021.10.07.21264419.
Read pre-print hereCramer, E.Y., Huang, Y., Wang, Y., Ray, E.L., Cornell, M., Bracher, J., Brennen, A., Castero Rivadeneira, A.J., Gerding, A., House, K., Jayawardena, D., Kanji, A.H., Khandelwal, A., Le, K., Niemi, J., Stark, A., Shah, A., Wattanchit, N., Zorn, M.W., & Reich, N.G., on behalf of the US COVID-19 Forecast Hub Consortium (2021). The United States COVID-19 Forecast Hub dataset. medRxiv: 2021.11.04.21265886v1.
Read pre-print hereTruelove, S., Smith, C.P., Qin, M., Mullany, L.C., Borchering, R.K., Lessler, J., Shea, K., Howerton, E., Contamin, L., Levander, J., Salerno, J., Hochheiser, H., Kinsey, M., Tallaksen, K., Wilson, S., Shin, L., Rainwater-Lovett, K., Lemaitre, J.C., Dent, J., Kaminsky, J., Lee, E.C., Perez-Saez, J., Hill, A., Karlen, D., Chinazzi, M., Davis, J.T., Mu, K., Xiong, X., Pastore y Piontti, A., Vespignani, A., Srivastava, A., Porebski, P., Venkatramanan, S., Adiga, A., Lewis, B., Klahn, B., Outten, J., Schlitt, J., Corbett, P., Telionis, P.A., Wang, L., Peddireddy, A.S., Hurt, B., Chen, J., Vullikanti, A., Marathe, A., Hoops, S., Bhattacharya, P., Machi, D., Chen, S., Paul, R., Janies, D., Thill, J-C., Galanti, M., Yamana, T., Pei, S., Shaman, J., Reich, N.G., Healy, J.M., Slayton, R.B., Biggerstaff, M., Johansson, M.A., Runge, M.C., & Viboud, C. (2021). Projected resurgence of COVID-19 in the United States in July—December 2021 resulting from the increased transmissibility of the Delta variant and faltering vaccination. medRxiv: 2021.08.28.21262748v2.
Read pre-print hereWu, D., Gao, L., Xiong, X., Chinazzi, M., Vespignani, A., Ma, Y.A., & Yu, R. Quantifying Uncertainty in Deep Spatiotemporal Forecasting (2021). ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), 2021.
Read paper hereAdjodah, D., Dinakar, K., Chinazzi, M., Fraiberger, S.P., Pentland, A., Bates, S., Staller, K., Vespignani, A., & Bhatt, D.L. (2021). Association between COVID-19 outcomes and mask mandates, adherence, and attitudes. PLOS ONE, 16(6), e0252315.
Read paper hereLu, F. S., Nguyen, A. T., Link, N. B., Molina, M., Davis, J.T., Chinazzi, M., Xiong, X., Vespignani, A., Lipsitch, M., & Santillana, M. (2021). Estimating the cumulative incidence of COVID-19 in the United States using influenza surveillance, virologic testing, and mortality data: four complementary approaches. PLOS Computational Biology, 17(6), e1008994.
Read paper hereBorchering, R. K., Viboud, C., Howerton, E., Smith, C. P., Truelove, S., Runge, M. C., Reich, N.G., Contamin, L., Levander, J., Salerno, J., van Panhuis, W., Kinsey, M., Tallaksen, K., Obrecht, R.F., Asher, L., Costello, C., Kelbaugh, M., Wilson, S., Shin, L., Gallagher, M.E., Mullany, L.C., Rainwater-Lovett, K., Lemaitre, J.C., Dent, J., Grantz, K.H., Kaminsky, J., Lauer, S.A., Lee, E.C., Meredith, H.R., Perez-Saez, J., Keegan, L.T., Karlen, D., Chinazzi, M., Davis, J.T., Mu, K., Xiong, X., Pastore y Piontti, A., Vespignani, V., Srivastava, A., Porebski, P., Venkatramanan, S., Adiga, A., Lewis, B., Klahn, B., Outten, J., Schlitt, J., Corbett, P., Telionis, P.A., Wang, L., Peddireddy, A.S., Hurt, B., Chen, J., Vullikanti, A., Marathe, M., Healy, J.M., Slayton, R.B., Biggerstaff, M., Johansson, M.A., Shea, K., & Lessler, J. (2021). Modeling of future COVID-19 cases, hospitalizations, and deaths, by vaccination rates and nonpharmaceutical intervention scenarios—United States, April–September 2021. Morbidity and Mortality Weekly Report, 70(19), 719.
Read paper hereGozzi, N., Tizzoni, M., Chinazzi, M., Ferres, L., Vespignani, A., & Perra, N. (2021). Estimating the effect of social inequalities on the mitigation of COVID-19 across communities in Santiago de Chile. Nature communications, 12(1), 1-9.
Read paper hereNande, A., Sheen, J., Walters, E.L., Klein, B., Chinazzi, M., Gheorghe, A., Adlam, B., Shinnick, J., Tejeda, M.F., Scarpino, S.V., Vespignani, A., Greenlee, A.J., Schneider, D., Levy, M. Z., & Hill, A.L. (2021). The effect of eviction moratoria on the transmission of SARS-CoV-2. Nature Communications, 12, 2274.
Read paper hereKogan, N.E., Clemente, L., Liautaud, P., Kaashoek, J., Link, N.B., Nguyen, A.T., Lu, F.S., Huybers P., Resch B., Havas C., Petutschnig A., Davis J.T., Chinazzi, M., Mustafa, B., Hanage, W.P., Vespignani, A., & Santillana, M. (2021). An early warning approach to monitor COVID-19 activity with multiple digital traces in near real-time. Science Advances, 7(10), eabd6989.
Read paper hereDu, Z., Pandey, A., Bai, Y., C Fitzpatrick, M., Chinazzi, M., Pastore y Piontti, A., Lachmann, M., Vespignani, A., Cowling, B.J., Galvani, A.P., & Meyers, L.A. (2021) Comparative cost-effectiveness of SARS-CoV-2 testing strategies in the USA: a modelling study. The Lancet Public Health, 6(3), e184-e191.
Read paper hereMistry, D., Litvinova, M., Patore y Piontti, A., Chinazzi, M., Fumanelli, L., Gomes, M.F., Haque, S.A., Liu, Q-H., Mu, K., Xiong, X., Halloran, M.E., Longini, I.M., Merler, S., Ajelli, M., & Vespignani, A. (2021). Inferring high-resolution human mixing patterns for disease modeling. Nature Communications, 12, 323.
Read paper herePoirier, C., Liu, D., Clemente, L., Ding, X., Chinazzi, M., Davis, J.T., Vespignani, A., & Santillana, M. (2020). Real-time forecasting of the COVID-19 outbreak in Chinese provinces: machine learning approach using novel digital data and estimates from mechanistic models. Journal of Medical Internet Research, 22(8), e20285.
Read paper hereAleta, A., Martin-Corral, D., Pastore y Piontti, A., Ajelli, M., Litvinova, M., Chinazzi, M., Dean, N.E., Halloran, M.E., Longini, I.M., Merler, S., Pentland, A., Vespignani, A., Moro, E., & Moreno, Y. (2020). Modelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19. Nature Human Behaviour, 4(9), 964-971.
Read paper hereChinazzi, M., Davis, J.T., Ajelli, M., Gioannini, C., Litvinova, M., Merler, S., Pastore y Piontti, A., Mu, K., Rossi, L., Sun, K., Viboud, C., Xiong, X., Yu, H., Halloran, M.E., Longini, I.M., & Vespignani, A. (2020). The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science, 368(6489), 395-400.
Read paper hereChinazzi, M., Pastore y Piontti, A., Davis, J.T., Mu, K., Gozzi, N., Perra, N., Ajelli, M., & Vespignani, A. (2021). The path to dominance: geographical heterogeneity in the establishment of the alpha variant in the US. Working paper.
Read paper hereWu, D., Chinazzi, M., Vespignani, A., Ma, Y. A., & Yu, R. (2021). Accelerating Stochastic Simulation with Interactive Neural Processes. arXiv preprint arXiv:2106.02770.
Read pre-print hereGozzi, N., Chinazzi, M., Davis, J. T., Mu, K., Pastore y Piontti, A., Ajelli, M., Perra, N., & Vespignani, A. (2021). Estimating the spreading and dominance of SARS-CoV-2 VOC 202012/01 (lineage B.1.1.7) across Europe. medRxiv 2021.02.22.21252235.
Read pre-print hereWu, D., Gao, L., Xiong, X., Chinazzi, M., Vespignani, A., Ma, Y., & Yu, R. (2021). DeepGLEAM: a hybrid mechanistic and deep learning model for COVID-19 forecasting. arXiv preprint arXiv:2102.06684.
Read pre-print hereCramer, E., Ray, E., Lopez, V., Bracher, J., Brennen, A., Rivadeneira, A., Gerding, A., Gneiting, T., House, K., Huang, Y., Jayawardena, D., Kanji, A., Khandelwal, A., Le, K., Mühlemann, A., Niemi, J., Shah, A., Stark, A., Wang, Y., Wattanachit, N., Zorn, M., Gu, Y., Jain, S., Bannur, N., Deva, A., Kulkarni, M., Merugu, S., Raval, A., Shingi, S., Tiwari, A., White, J., Woody, S., Dahan, M., Fox, S., Gaither, K., Lachmann, M., Meyers, L., Scott, J., Tec, M., Srivastava, A., George, G., Cegan, J., Dettwiller, I., England, W., Farthing, M., Hunter, R., Lafferty, B., Linkov, I., Mayo, M., Parno, M., Rowland, M., Trump, B., Corsetti, S., Baer, T., Eisenberg, M., Falb, K., Huang, Y., Martin, E., McCauley, E., Myers, R., Schwarz, T., Sheldon, D., Gibson, G., Yu, R., Gao, L., Ma, Y., Wu, D., Yan, X., Jin, X., Wang, Y.X., Chen, Y., Guo, L., Zhao, Y., Gu, Q., Chen, J., Wang, L., Xu, P., Zhang, W., Zou, D., Biegel, H., Lega, J., Snyder, T., Wilson, D., McConnell, S., Walraven, R., Shi, Y., Ban, X., Hong, Q.J., Kong, S., Turtle, J., Ben-Nun, M., Riley, P., Riley, S., Koyluoglu, U., DesRoches, D., Hamory, B., Kyriakides, C., Leis, H., Milliken, J., Moloney, M., Morgan, J., Ozcan, G., Schrader, C., Shakhnovich, E., Siegel, D., Spatz, R., Stiefeling, C., Wilkinson, B., Wong, A., Gao, Z., Bian, J., Cao, W., Ferres, J., Li, C., Liu, T.Y., Xie, X., Zhang, S., Zheng, S., Vespignani, A., Chinazzi, M., Davis, J.T., Mu, K., Pastore y Piontti, A., Xiong, X., Zheng, A., Baek, J., Farias, V., Georgescu, A., Levi, R., Sinha, D., Wilde, J., Penna, N., Celi, L., Sundar, S., Cavany, S., Espana, G., Moore, S., Oidtman, R., Perkins, A., Osthus, D., Castro, L., Fairchild, G., Michaud, I., Karlen, D., Lee, E., Dent, J., Grantz, K., Kaminsky, J., Kaminsky, K., Keegan, L., Lauer, S., Lemaitre, J., Lessler, J., Meredith, H., Perez-Saez, J., Shah, S., Smith, C., Truelove, S., Wills, J., Kinsey, M., Obrecht, R., Tallaksen, K., Burant, J., Wang, L., Gao, L., Gu, Z., Kim, M., Li, X., Wang, G., Wang, Y., Yu, S., Reiner, R., Barber, R., Gaikedu, E., Hay, S., Lim, S., Murray, C., Pigott, D., Prakash, B., Adhikari, B., Cui, J., Rodriguez, A., Tabassum, A., Xie, J., Keskinocak, P., Asplund, J., Baxter, A., Oruc, B., Serban, N., Arik, S., Dusenberry, M., Epshteyn, A., Kanal, E., Le, L., Li, C.L., Pfister, T., Sava, D., Sinha, R., Tsai, T., Yoder, N., Yoon, J., Zhang, L., Abbott, S., Bosse, N., Funk, S., Hellewel, J., Meakin, S., Munday, J., Sherratt, K., Zhou, M., Kalantari, R., Yamana, T., Pei, S., Shaman, J., Ayer, T., Adee, M., Chhatwal, J., Dalgic, O., Ladd, M., Linas, B., Mueller, P., Xiao, J., Li, M., Bertsimas, D., Lami, O., Soni, S., Bouardi, H., Wang, Y., Wang, Q., Xie, S., Zeng, D., Green, A., Bien, J., Hu, A., Jahja, M., Narasimhan, B., Rajanala, S., Rumack, A., Simon, N., Tibshirani, R., Tibshirani, R., Ventura, V., Wasserman, L., O’Dea, E., Drake, J., Pagano, R., Walker, J., Slayton, R., Johansson, M., Biggerstaff, M., & Reich, N. (2021). Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the US. medRxiv 2021.02.03.21250974v2.
Read pre-print hereAleta, A., Martín-Corral, D., Bakker, M. A., Pastore y Piontti, A., Ajelli, M., Litvinova, M., Chinazzi, M., Dean, N.E., Halloran, M.E., Longini, I.M., Pentland, A., Vespignani, A., Moreno, Y., & Moro, E. (2020). Quantifying the importance and location of SARS-CoV-2 transmission events in large metropolitan areas. medRxiv 2020.12.15.20248273.
Read pre-print hereDavis, J.T., Chinazzi, M., Perra, N., Mu, K., Pastore y Piontti, A., Ajelli, M., Dean, N.E., Gioannini, C., Litvinova, M., Merler, S., Rossi, L., Sun, K., Xiong, X., Halloran, M.E., Longini, I.M., Viboud, C., & Vespignani, A. (2020). Estimating the establishment of local transmission and the cryptic phase of the COVID-19 pandemic in the USA. medRxiv 2020.07.06.20140285.
Read pre-print hereShah, C., Dehmamy, N., Perra, N., Chinazzi, M., Barabási, A. L., Vespignani, A., & Yu, R. (2020). Finding Patient Zero: Learning Contagion Source with Graph Neural Networks. arXiv preprint arXiv:2006.11913.
Read pre-print hereChinazzi, M., Davis, J. T., Mu, K., Pastore y Piontti, A., Perra, N., Scarpino, S.V., & Vespignani, A. (2020). Preliminary estimates of the international spreading risk associated with the SARS-CoV-2 VUI 202012/01. Northeastern University, Laboratory for the Modeling of Biological and Socio-technical Systems research report, December 26th, 2020. Available online at https://www.mobs-lab.org/2019ncov.html.
Klein, B., LaRock, T., McCabe, S., Torres, L., Friedland, L., Privitera, F., Lake, B., Kraemer, M.U.G., Brownstein, J.S., Lazer, D., Eliassi-Rad, T., Scarpino, S.V., Vespignani, A., & Chinazzi, M. (2020). Reshaping a nation: Mobility, commuting, and contact patterns during the COVID-19 outbreak. Northeastern University, Network Science Institute research report, May 11th, 2020. Available online at https://www.mobs-lab.org/2019ncov.html.
Klein, B., LaRock, T., McCabe, S., Torres, L., Privitera, F., Lake, B., Kraemer, M.U.G., Brownstein, J.S., Lazer, D., Eliassi-Rad, T., Scarpino, S.V., Chinazzi, M. & Vespignani, A. (2020). Assessing changes in commuting and individual mobility in major metropolitan areas in the United States during the COVID-19 outbreak. Northeastern University, Network Science Institute research report, March 31st, 2020. Available online at https://www.mobs-lab.org/2019ncov.html.
Ray, E. L., Wattanachit, N., Niemi, J., Kanji, A. H., House, K., Cramer, E. Y., Bracher, J., Zheng, A., Yamana, T.K., Xiong, X., Woody, S., Wang, Y., Wang, L., Walraven, R.L., Tomar, V., Sherratt, K., Sheldon, D., Reiner, R.C., Prakash, B.A., Osthus, D., Li, M.L., Lee, E.C., Koyluoglu, U., Keskinocak, P., Gu, Y., Gu, Q., George, G.E., España, G., Corsetti, S., Chhatwal, J., Cavany, S., Biegel, H., Ben-Nun, M., Walker, J., Slayton, R., Lopez, V., Biggerstaff, M., Johansson, M.A., Reich, N.G., & COVID-19 Forecast Hub Consortium. (2020). Ensemble Forecasts of Coronavirus Disease 2019 (COVID-19) in the us. medRxiv 2020.08.19.20177493.
Read pre-print hereMOBS Laboratory. Estimating the onset of local transmission of the COVID-19 epidemic in African countries (Report V1.0). Northeastern University, Laboratory for the Modeling of Biological and Socio-technical Systems research report, March 17th, 2020. Available online at https://www.mobs-lab.org/2019ncov.html.
Chinazzi, M., Davis, J.T., Mu, K., Pastore y Piontti, A., Ajelli, M., Dean, N.E., Gioannini, C., Litvinova, M., Merler, S., Rossi, L., Sun, K., Viboud, C., Halloran, M.E., Longini, I.M., & Vespignani, A. (2020). Estimating the risk of sustained community transmission of COVID-19 outside Mainland China. Northeastern University, Laboratory for the Modeling of Biological and Socio-technical Systems research report, March 11th, 2020. Available online at https://www.mobs-lab.org/2019ncov.html.
Chinazzi, M., Davis, J. T., Gioannini, C., Litvinova, M., Pastore y Piontti, A., Rossi, L., Xiong, X., Halloran, M.E., Longini, I.M., & Vespignani, A. (2020). Preliminary assessment of the International Spreading Risk Associated with the 2019 novel Coronavirus (2019-nCoV) outbreak in Wuhan City. Northeastern University, Laboratory for the Modeling of Biological and Socio-technical Systems research report. 8 reports between January 17th and January 29th, 2020. Available online at https://www.mobs-lab.org/2019ncov.html.